科技型中小企业  国家高新技术企业  创新型中小企业  专精特新中小企业
机器学习电催化培训
[版权声明]本课程版权归华算科技所有,仅限个人学习,严禁任何形式的录制、传播和账号分享。一经发现,平台将依法保留追究权,情节严重者将承担法律责任。
课程介绍
课程目录
讲师介绍

课程简介

机器学习在电催化领域的火热与迅猛发展相比,机器学习在电催化领域的研究资料却相对匮乏。很多电催化领域的研究者们想在自己的领域中使用机器学习,却因数学与编程对其望而却步。为了有效降低大家入门机器学习的门槛,华算科技黄老师原创设计了机器学习与电催化课程,课程同时包含理论与实操部分,并包含大量电催化中使用机器学习的研究案例,可以帮助大家快速掌握机器学习这一有力工具,并快速使用到自己的研究之中。


课程内容



一、机器学习简介


认识机器学习,了解机器学习基本思想。了解机器学习在化学中的应用以及近年逐渐火热的原因,了解当代化学学习的四个范式。



二、基础模型


学习sklearn库,学习线性回归,广义线性回归,利用线性模型解决电催化中HER案例。学习约束项的添加与使用方法,理解约束项添加的必要性,理解套索回归、岭回归、弹性网基本原理,对OER案例使用约束项,学习机器学习案例文献。





三、模型评估


学习欠拟合与过拟合的概念,掌握模型评价方法并了解其必要性,了解训练误差、测试误差、泛化误差的区别与联系,学习留出法、交叉验证法、自助法,并掌握各种模型评估方法的使用代码,并在OER案例中进行实际应用。



四、分类算法


学习决策树算法、逻辑回归算法、k近邻算法、Bayes算法与支持向量机算法。了解不同算法基本原理,掌握不同分类算法的基本使用。使用分类算法对OER机理、纳米粒子进行分类。学习分类算法的可视化,学习分类算法的性能度量方法。



五、回归算法


学习神经网络算法、支持向量机算法的基本原理,掌握Python中回归算法使用方法。学习数据的归一化、标准化。使用机器学习模型对OER超电势进行预测,学习Pearson相关系数,查看数据相关性,使用Python求算数据相关性,并对相关系数进行可视化,学习机器学习文献,进行文献详读。




六、集成学习


学习决策树回归算法,学习集成学习方法。集成学习由于结果更加精确、稳定、强壮,逐渐成为机器学习的主流算法。本节将主要学习Bagging与Boosting两种类型的集成学习方法,学习其原理与基本使用,学习XGBoost算法。学习互信息,特征重要性,SHAP。学习使用集成学习解决MXene材料、CO2RR、OER断键实例中的问题。



七、描述符与预处理


梳理常用的数据预处理方法,学习缺失值的处理,重复值的处理,数据格式的转换。学习原子描述符,库伦矩阵描述符,Magpie描述符,密度描述符,学习描述符的添加与使用方式,并尝试对钙钛矿案例、吸附能案例手动添加描述符。




八、总结


通过前面课程的学习,同学们已经能掌握机器学习在电催化领域使用的基本思路,本节将对所学机器学习算法进行总结,并讲述算法选择基本技巧,讲述机器学习初学者常见错误及避免方法。


1. 机器学习简介
2. 线性模型
3. 模型评价
4. 约束项
5. 神经网络
6. 分类算法
7. 回归算法
8. 集成学习(1)
9. 集成学习(2)
10. XGBoost
11. 描述符
12. 预处理
13. 总结

直播讲师:黄老师

黄博士:华算科技全职技术专家,武汉大学本科,北京大学博士,新加坡国立大学访问学者。目前已发表SCI文章共20篇,其中第一作者文章5篇,单篇最高影响因子>40。 从事理论计算与实验化学研究工作十年,擅长使用机器学习进行化学理论的研究及实验数据的处理,曾获华中地区数学建模邀请赛三等奖,北京大学游戏AI对抗全国邀请赛第四名等相关奖项。

课程目录
1. 机器学习简介
2. 线性模型
3. 模型评价
4. 约束项
5. 神经网络
6. 分类算法
7. 回归算法
8. 集成学习(1)
9. 集成学习(2)
10. XGBoost
11. 描述符
12. 预处理
13. 总结
立即购买
3980.00
加入购物车
咨询
为你推荐
【Python零基础】科研数据分析专题培训
讲师:黄老师—华算科技
神经网络专题培训
讲师:
2025Python与机器学习专题培训
讲师:黄老师—华算科技
客服服务
电话咨询
客服电话
131-2955-1561
服务时间
09:00-21:00
微信咨询
关注我们 了解更多
投信建议
购物车