我们是在建造和使用集人类科技之大成的仪器——封东来
文末汇总了近两年130+篇同步辐射技术在单原子催化研究中的顶级期刊,供大家参考和学习。识别上方二维码,回复“411”即可获取资料!
同步辐射装置被誉为科技的“灯塔”,是集现代科技之大成的大型科学装置,是支撑多学科前沿研究和产业研发的平台。众所周知,同步辐射X射线吸收精细结构(XAFS)技术在揭示材料的电子结构和配位环境方面具有无可比拟的优势。
第十三届全国X射线吸收精细结构(XAFS)会议中提到,近两年单原子的出现加速了同步辐射的发展,XAFS的应用在全球范围内日益普及,多数用户通过多种途径积极利用XAFS进行深入的材料表征,显著提升了他们的研究水平。那么,同步辐射XAFS到底能为我们做什么呢?总结下来大概有以下几点:
- XANES (X-ray Absorption Near Edge Structure)
价态分析:通过观察吸收边的位置偏移(向高能量方向偏移表明价态升高)或白线峰的强度/面积(增强或面积增大通常与价态升高相关),可以推断样品的平均价态。
PCA主元分析(Principal Component Analysis):本质上是一种数学中的线性代数变化方法,可以分析复杂体系中的吸收谱。
LCF组分分析(Linear Combination Fitting):定量分析已知样品中不同化学组分的比例。
近边结构计算:确定样品的立体几何结构模型。
- EXAFS (Extended X-ray Absorption Fine Structure)
结构参数分析:拟合EXAFS数据能够精确获得中心原子周围配位原子的类型、数量以及它们之间的平均距离等结构参数。
- 小波分析
三维信息表示:小波变换提供了一个三维的数据表示,其中横轴对应于K空间(波矢空间),纵轴对应于R空间(实空间距离),而不同的颜色代表峰的强度。这种表示不仅可以区分配位原子的键长,还能定性地区分配位原子的种类(原子序数较大的元素在图中的位置更靠右)。
下面,我们将通过一篇顶刊,学习如何分析同步辐射XAFS数据。
文章介绍
析氧反应(OER)对于可再生能源转换技术至关重要,但催化剂的结构–活性关系和潜在的催化机制尚未完全了解。在此,浙江师范大学Haiyan Wang,挪威东南大学Yong Hu,浙江农林科技大学Hao Huang展示了一种通过阳离子和阴离子双重掺杂同时实现晶格氧活化和增强局部电场来促进 OER 的策略。
(文献来源:Ye, P.; Fang, K.; Wang, H.; Wang, Y.; Huang, H.; Mo, C.; Ning, J.; Hu, Y. Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation. Nature Communications 2024, 15 (1), 1012. DOI: 10.1038/s41467-024-45320-0.)
文章要点
1)研究人员构建了 Fe 和 F 共掺杂 CoO 纳米针的粗糙阵列,并在 500 mA cm–2下实现了 277 mV 的低过电势。双掺杂的 Fe 和 F 可以协同调整 CoO 的电子特性,从而提高金属–氧共价性并刺激晶格氧活化。
2)特别是,Fe掺杂引起尖端增强和邻近效应的协同效应,有效地集中OH−离子,优化反应能垒并促进O2解吸。
这项工作展示了一种耦合晶格氧和局部电场以实现有效电催化水氧化的概念策略。
图文解析
图 1. a 归一化的 CoO NNAs、F-CoO NNAs 和 Fe, F-CoO NNAs 的 O K 边光谱;b 归一化的 Co K 边 XANES 光谱;c Co K 边的 FT-EXAFS 光谱;d-i CoO NNAs、F-CoO NNAs、Fe, F-CoO NNAs 和标样(包括 Co 箔、标准 CoO 和 Co2O3)的 WT-EXAFS 分析。
图a展示了CoO纳米针阵列(NNAs)、F-CoO NNAs和Fe, F-CoO NNAs的O K边光谱,其中532 eV处的O K边前峰归因于O 2p态与Co 3d态的杂化。正如所描述的,F-CoO NNAs的O K边前峰几乎消失,表明F掺杂时发生了氧解离。值得注意的是,与CoO NNAs相比,Fe, F-CoO NNAs呈现出更强烈的边前锋,表明金属–氧共价性增强。Co K边X射线吸收近边结构(XANES)光谱显示(图b),这三个样品的吸收边位于标样CoO和Co2O3之间,表明Co的价态介于+2和+3之间。与CoO NNAs相比,Fe, F-CoO NNAs观察到向低能量的移动,表明Co的价态较低。Co K边的傅立叶变换扩展X射线吸收精细结构(FT-EXAFS)光谱揭示了在~1.4和~2.4 Å处的两个壳层,分别对应于Co−O和Co−Co散射路径(图c)。Co K边振荡图的几乎重叠以及未掺杂和掺杂样品中Co−O和Co−Co的相似距离表明,Fe和F的掺入没有引起CoO的结构显著变化。这一点通过相似的小波变换(WT)图进一步证实(图2d-i)。
为了帮助大家更好地了解同步辐射技术的应用,小编特别汇集了两年内超过130篇发表在顶级学术期刊上的研究成果。这些研究均聚焦于利用同步辐射技术深入探究单原子催化的机制和特性。以下是一些精选的论文,供大家研究和学习参考。
[1] Pei Jiajing, Shang Huishan, Mao Junjie, et al. A replacement strategy for regulating local environment of single-atom Co-SxN4−x catalysts to facilitate CO2 electroreduction [J]. Nature Communications, 2024, 15(1): 416.
[2] Ye Pengcheng, Fang Keqing, Wang Haiyan, et al. Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation [J]. Nature Communications, 2024, 15(1): 1012.
[3] Xu Airong, Liu Tong, Liu Dong, et al. Edge-Rich Pt-O-Ce Sites in CeO2Supported Patchy Atomic-Layer Pt Enable a Non-CO Pathway for Efficient Methanol Oxidation [J]. Angewandte Chemie International Edition, n/a(n/a): e202410545.
[4] Zhu Hong-Jing, Si Duan-Hui, Guo Hui, et al. Oxygen-tolerant CO2electroreduction over covalent organic frameworks via photoswitching control oxygen passivation strategy [J]. Nature Communications, 2024, 15(1): 1479.
[6] Pinakidou F., Katsikini M., Simeonidis K., et al. An X-ray absorption study of synthesis- and As adsorption-induced microstructural modifications in Fe oxy-hydroxides [J]. Journal of Hazardous Materials, 2015, 298: 203-9.
[7] Liang Jianli, Zhang Huabin, Song Qianqian, et al. Modulating Charge Separation of Oxygen-Doped Boron Nitride with Isolated Co Atoms for Enhancing CO2-to-CO Photoreduction [J]. Advanced Materials, 2024, 36(1): 2303287.
[8] Su Hui, Yang Chenyu, Liu Meihuan, et al. Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers [J]. Nature Communications, 2024, 15(1): 95.
[9] Tang Hai-Tao, Zhou He-Yang, Pan Ying-Ming, et al. Single-Atom Manganese-Catalyzed Oxygen Evolution Drives the Electrochemical Oxidation of Silane to Silanol [J].Angewandte Chemie International Edition, 2024, 63(3): e202315032.
[10] Tsunekawa Shun, Yamamoto Futaba, Wang Ke-Hsuan, et al. Operando Observations of a Manganese Oxide Electrocatalyst for Water Oxidation Using Hard/Tender/Soft X-ray Absorption Spectroscopy [J]. The Journal of Physical Chemistry C, 2020, 124(43): 23611-8.
[11] Xu Yi Ning, Mei Bingbao, Xu Qiucheng, et al. In situ/Operando Synchrotron Radiation Analytical Techniques for CO2/CO Reduction Reaction: From Atomic Scales to Mesoscales [J]. Angewandte Chemie International Edition, 2024, 63(25): e202404213.
[12] Liu Ce, Li Teng, Dai Xingchao, et al. Catalytic Activity Enhancement on Alcohol Dehydrogenation via Directing Reaction Pathways from Single- to Double-Atom Catalysis [J]. Journal of the American Chemical Society, 2022, 144(11): 4913-24.
[13] Che Wei, Li Pai, Han Gao-Feng, et al. Out-of-Plane Single-Copper-Site Catalysts for Room-Temperature Benzene Oxidation [J]. Angewandte Chemie International Edition, 2024, 63(20): e202403017.
[14] Peng Chen, Ma Jiaxing, Luo Gan, et al. (111) Facet-oriented Cu2Mg Intermetallic Compound with Cu3-Mg Sites for CO2Electroreduction to Ethanol with Industrial Current Density [J]. Angewandte Chemie International Edition, 2024, 63(17): e202316907.
[15] Deng Ting, Jia Shuaiqiang, Chen Chunjun, et al. Polymer Modification Strategy to Modulate Reaction Microenvironment for Enhanced CO2Electroreduction to Ethylene [J]. Angewandte Chemie International Edition, 2024, 63(2): e202313796.
[16] Sun Zhiyi, Li Chen, Wei Zihao, et al. Sulfur-Bridged Asymmetric CuNi Bimetallic Atom Sites for CO2 Reduction with High Efficiency [J]. Advanced Materials, n/a(n/a): 2404665.
[17] Li Yaqiong, Luo Xuan, Wei Zihao, et al. Precisely constructing charge-asymmetric dual-atom Fe sites supported on hollow porous carbon spheres for efficient oxygen reduction [J]. Energy & Environmental Science, 2024, 17(13): 4646-57.
[18] Li Yinqi, Wei Zihao, Sun Zhiyi, et al. Sulfur Modified Carbon-Based Single-Atom Catalysts for Electrocatalytic Reactions [J]. Small, n/a(n/a): 2401900.
[19] Sun Zhiyi, Li Chen, Lin Jie, et al. Lattice Strain and Mott–Schottky Effect of the Charge-Asymmetry Pd1Fe Single-Atom Alloy Catalyst for Semi-Hydrogenation of Alkynes with High Efficiency [J]. ACS Nano, 2024, 18(20): 13286-97.
[20] Huang Helai, Sun Mingze, Li Shuwei, et al. Enhancing H2O2Electrosynthesis at Industrial-Relevant Current in Acidic Media on Diatomic Cobalt Sites [J]. Journal of the American Chemical Society, 2024, 146(13): 9434-43.
[21] Xu Xiaochun, Li Xinyi, Lu Wenting, et al. Collective Effect in a Multicomponent Ensemble Combining Single Atoms and Nanoparticles for Efficient and Durable Oxygen Reduction [J]. Angewandte Chemie International Edition, 2024, 63(15): e202400765.
[22] Chen Changli, Chai Jing, Sun Mengru, et al. An asymmetrically coordinated ZnCoFe hetero-trimetallic atom catalyst enhances the electrocatalytic oxygen reaction [J]. Energy & Environmental Science, 2024, 17(6): 2298-308.
[23] Liu Lizhen, Hu Jingcong, Ma Zhaoyu, et al. One-dimensional single atom arrays on ferroelectric nanosheets for enhanced CO2 photoreduction [J]. Nature Communications, 2024, 15(1): 305.
[24] Hu Qikun, Yang Ke, Peng Ouwen, et al. Ammonia Electrosynthesis from Nitrate Using a Ruthenium-Copper Cocatalyst System: A Full Concentration Range Study [J]. Journal of the American Chemical Society, 2024, 146(1): 668-76.
[25] Liu Kaiyuan, Sun Zhiyi, Chen Wenxing, et al. Ultra-Fast Pulsed Discharge Preparation of Coordinatively Unsaturated Asymmetric Copper Single-Atom Catalysts for CO2 Reduction [J]. Advanced Functional Materials, 2024, 34(16): 2312589.
[26] Chen Shaohua, Liu Pengxin. A review on the photochemical synthesis of atomically dispersed catalysts [J]. Materials Chemistry Frontiers, 2024, 8(5): 1334-48.
[27] Ma Tiantian, Wang Peng, Niu Hua-Jie, et al. Single Ru atoms dispersed on MoSe2/MXene nanosheets with multiple interfaces for enhanced acidic hydrogen evolution [J]. Carbon, 2024, 218: 118758.
[28] Ren Jia, Xu Yongsheng, Ye Chenliang, et al. Single atom copper anchored on the sulfated zirconia for catalytic synthesis of dimethoxymethane via methanol no-oxygen dehydrogenation [J]. Chemical Engineering Journal, 2024, 479: 147774.
[29] Meng Haibing, Wu Bin, Zhang Dantong, et al. Optimizing electronic synergy of atomically dispersed dual-metal Ni-N4 and Fe-N4 sites with adjacent Fe nanoclusters for high-efficiency oxygen electrocatalysis [J]. Energy & Environmental Science, 2024, 17(2): 704-16.
[30] Chai Lulu, Song Jinlu, Kumar Anuj, et al. Bimetallic-MOF Derived Carbon with Single Pt Anchored C4 Atomic Group Constructing Super Fuel Cell with Ultrahigh Power Density And Self-Change Ability [J]. Advanced Materials, 2024, 36(1): 2308989.
[31] Pei Jiajing, Yang Li, Lin Jie, et al. Integrating Host Design and Tailored Electronic Effects of Yolk–Shell Zn–Mn Diatomic Sites for Efficient CO2 Electroreduction [J]. Angewandte Chemie International Edition, 2024, 63(3): e202316123.
[32] Ren Guangmin, Zhao Jianyong, Zhao Zehui, et al. Defects-Induced Single-Atom Anchoring on Metal–Organic Frameworks for High-Efficiency Photocatalytic Nitrogen Reduction [J]. Angewandte Chemie International Edition, 2024, 63(2): e202314408.
[33] Zhang Chengcheng, Yan Yingkui, Huang Hubiao, et al. Efficient and Selective Photocatalytic Oxidation of CH4over Fe Single-Atom-Incorporated MOFs under Visible Light [J]. ACS Catalysis, 2023, 13(23): 15351-9.
[34] Yuan Haifeng, Jiang Di, Li Zhimeng, et al. Laser Synthesis of PtMo Single-Atom Alloy Electrode for Ultralow Voltage Hydrogen Generation [J]. Advanced Materials, 2024, 36(5): 2305375.
[35] Liu Maosong, Sun Tao, Peng Tingyu, et al. Fe-NC Single-Atom Catalyst with Hierarchical Porous Structure and P-O Bond Coordination for Oxygen Reduction [J]. ACS Energy Letters, 2023, 8(11): 4531-9.
[36] Wu Peng Fei, Yang Yu Qi, Xi1 Hong Yan, et al. Operando Spectroscopy Observation of Mo Clusters-Ti3C2T Catalyst/Support Interface’s Dynamic Evolution in Hydrogen Evolution Reaction [J]. Small, 2024, 20(9): 2306716.
[37] Li Bo, Ju Cheng-Wei, Wang Wenlong, et al. Heck Migratory Insertion Catalyzed by a Single Pt Atom Site [J]. Journal of the American Chemical Society, 2023, 145(44): 24126-35.
[38] Gu Hongfei, Li Jiani, Niu Xiangfu, et al. Symmetry-Breaking p-Block Antimony Single Atoms Trigger N-Bridged Titanium Sites for Electrocatalytic Nitrogen Reduction with High Efficiency [J]. ACS Nano, 2023, 17(21): 21838-49.
[39] Musgrave Charles B., Li Yuyin, Luo Zhengtang, Goddard William A. Dual atom catalysts for rapid electrochemical reduction of CO to ethylene [J]. Nano Energy, 2023, 118: 108966.
[40] Zhang Yanzhao, Johannessen Bernt, Zhang Peng, et al. Reversed Electron Transfer in Dual Single Atom Catalyst for Boosted Photoreduction of CO2 [J]. Advanced Materials, 2023, 35(44): 2306923.
[41] Zhang Liping, Li Teng, Dai Xingchao, et al. Water Activation Triggered by Cu–Co Double-Atom Catalyst for Silane Oxidation [J]. Angewandte Chemie International Edition, 2023, 62(47): e202313343.
[42] Jiang Liya, Shang Jian, Peng Xianyun, et al. Single atom catalysts enable quasi-homogeneous synthesis of quinazoline [J]. Chemical Engineering Journal, 2023, 474: 145651.
[43] Jiao Jiqing, Yuan Qing, Tan Meijie, et al. Constructing asymmetric double-atomic sites for synergistic catalysis of electrochemical CO2 reduction [J]. Nature Communications, 2023, 14(1): 6164.
[44] Chen Xiang, Guan Shuhui, Zhou Jianjiang, et al. Photocatalytic Free Radical-Controlled Synthesis of High-Performance Single-Atom Catalysts [J]. Angewandte Chemie International Edition, 2023, 62(45): e202312734.
[45] Chen Yuhui, Zhang Rui, Wang Hsiao-Tsu, et al. Temperature-Dependent Structures of Single-Atom Catalysts [J]. Chemistry -An Asian Journal, 2023, 18(20): e202300679.
[46] Zhao Kaiyue, Shen Qikai, Tao Yu, et al. Atomically Dispersed N/O-Coordinated Cobalt Catalyst Enables Aerobic Oxygenation of Olefins under Ambient Conditions [J]. ACS Catalysis, 2023, 13(19): 12591-600.
[47] Guo Yang, Jin Zhaoqing, Lu Jianhao, et al. Engineering a deficient-coordinated single-atom indium electrocatalyst for fast redox conversion in practical 500 W h kg−1-level pouch lithium–sulfur batteries [J]. Energy & Environmental Science, 2023, 16(11): 5274-83.
[48] Hai Xiao, Zheng Yang, Yu Qi, et al. Geminal-atom catalysis for cross-coupling [J]. Nature, 2023, 622(7984): 754-60.
[49] Liu Wu-Jun, Zhou Xiao, Min Yuan, et al. Engineering of Local Coordination Microenvironment in Single-Atom Catalysts Enabling Sustainable Conversion of Biomass into a Broad Range of Amines [J]. Advanced Materials, 2024, 36(23): 2305924.
[50] Zhuang Huifeng, Zhang Tengfei, Xiao Hong, et al. Free-standing cross-linked hollow carbonaceous nanovesicle fibers with atomically dispersed CoN4 electrocatalytic centers driving high-performance Li-S battery [J]. Applied Catalysis B: Environmental, 2024, 340: 123273.
[51] Da Yumin, Tian Zhangliu, Jiang Rui, et al. Single-Atom Pt Doping Induced p-Type to n-Type Transition in NiO Nanosheets toward Self-Gating Modulated Electrocatalytic Hydrogen Evolution Reaction [J]. ACS Nano, 2023, 17(18): 18539-47.
[52] Chen Weiming, Yao Zhen, Chen Wenxing, et al. Fully Exposed Iridium Clusters Enable Efficient Hydrogenation of N-Heteroarenes [J]. ACS Catalysis, 2023, 13(18): 12153-62.
[53] Wu Zelin, Huang Bingkun, Wang Xinhao, et al. Facilely Tuning the First-Shell Coordination Microenvironment in Iron Single-Atom for Fenton-like Chemistry toward Highly Efficient Wastewater Purification [J]. Environmental Science & Technology, 2023, 57(37): 14046-57.
[54] Wang Luqi, Xu Zipeng, Kuo Chun-Han, et al. Stabilizing Low-Valence Single Atoms by Constructing Metalloid Tungsten Carbide Supports for Efficient Hydrogen Oxidation and Evolution [J]. Angewandte Chemie International Edition, 2023, 62(42): e202311937.
[55] Hsu Chia-Shuo, Wang Jiali, Chu You-Chiuan, et al. Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2reduction [J]. Nature Communications, 2023, 14(1): 5245.
[56] Wang Qilun, Wang Huawei, Cao Hao, et al. Atomic metal–non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells [J]. Nature Catalysis, 2023, 6(10): 916-26.
[57] Wang Cai, Wang Xiaoyu, Ren Houan, et al. Combining Fe nanoparticles and pyrrole-type Fe-N4 sites on less-oxygenated carbon supports for electrochemical CO2 reduction [J]. Nature Communications, 2023, 14(1): 5108.
[58] Jia Chen, Zhao Yong, Song Shuang, et al. Highly Ordered Hierarchical Porous Single-Atom Fe Catalyst with Promoted Mass Transfer for Efficient Electroreduction of CO2 [J]. Advanced Energy Materials, 2023, 13(37): 2302007.
[59] Feng Jiaqi, Zhang Libing, Liu Shoujie, et al. Modulating adsorbed hydrogen drives electrochemical CO2-to-C2products [J]. Nature Communications, 2023, 14(1): 4615.
[60] Endo Kenichi, Saruyama Masaki, Teranishi Toshiharu. Location-selective immobilisation of single-atom catalysts on the surface or within the interior of ionic nanocrystals using coordination chemistry [J]. Nature Communications, 2023, 14(1): 4241.
[61] Kim Beomil, Tan Ying Chuan, Ryu Yeonkyeong, et al. Trace-Level Cobalt Dopants Enhance CO2 Electroreduction and Ethylene Formation on Copper [J]. ACS Energy Letters, 2023, 8(8): 3356-64.
[62] Sun Jia-Lu, Jiang Huanfeng, Dixneuf Pierre H., Zhang Min. Reductive Coupling of Nitroarenes and HCHO for General Synthesis of Functional Ethane-1,2-diamines by a Cobalt Single-Atom Catalyst [J]. Journal of the American Chemical Society, 2023, 145(31): 17329-36.
[63] Wang Xiaoning, Tong Yanfu, Feng Wenting, et al. Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation [J]. Nature Communications, 2023, 14(1): 3767.
[64] Wang Tianfu, Wang Jianghao, Lu Chenbao, et al. Single-Atom Anchored Curved Carbon Surface for Efficient CO2 Electro-Reduction with Nearly 100% CO Selectivity and Industrially-Relevant Current Density [J]. Advanced Materials, 2023, 35(35): 2205553.
[65] Jiang Xiaoli, Tang Lei, Dong Lei, et al. Cu Single-Atom Catalysts for High-Selectivity Electrocatalytic Acetylene Semihydrogenation [J]. Angewandte Chemie International Edition, 2023, 62(33): e202307848.
[66] Xie Minghao, Tang Sishuang, Li Zhao, et al. Intermetallic Single-Atom Alloy In-Pd Bimetallene for Neutral Electrosynthesis of Ammonia from Nitrate [J]. Journal of the American Chemical Society, 2023, 145(25): 13957-67.
[67] Ma Lianbo, Zhu Guoyin, Wang Ziwei, et al. Long-Lasting Zinc-Iodine Batteries with Ultrahigh Areal Capacity and Boosted Rate Capability Enabled by Nickel Single-Atom Electrocatalysts [J]. Nano Letters, 2023, 23(11): 5272-80.
[68] Lan Jiao, Wei Zengxi, Lu Ying-Rui, et al. Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst [J]. Nature Communications, 2023, 14(1): 2870.
[69] Ren Xinyi, Zhao Jian, Li Xuning, et al. In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2reduction to methanol [J]. Nature Communications, 2023, 14(1): 3401.
[70] Jin Hongqiang, Zhao Runqing, Cui Peixin, et al. Sabatier Phenomenon in Hydrogenation Reactions Induced by Single-Atom Density [J]. Journal of the American Chemical Society, 2023, 145(22): 12023-32.
[71] Zheng Ying, Wang Qiang, Yang Qi, et al. Boosting the Hydroformylation Activity of a Rh/CeO2 Single-Atom Catalyst by Tuning Surface Deficiencies [J]. ACS Catalysis, 2023, 13(11): 7243-55.
[72] Sun Tao, Tang Zhiyuan, Zang Wenjie, et al. Ferromagnetic single-atom spin catalyst for boosting water splitting [J]. Nature Nanotechnology, 2023, 18(7): 763-71.
[73] Kim Cheolho, Min Heewon, Kim Junmin, Moon Jun Hyuk. Boosting electrochemical methane conversion by oxygen evolution reactions on Fe–N–C single atom catalysts [J]. Energy & Environmental Science, 2023, 16(7): 3158-65.
[74] Liu Shaomian, Ji Yongjun, Liu Bing, et al. Co Single Atoms and CoO Nanoclusters Anchored on Ce0.75Zr0.25O2 Synergistically Boosts the NO Reduction by CO [J]. Advanced Functional Materials, 2023, 33(36): 2303297.
[75] Chen Jie, Zha Yajun, Liu Bing, et al. Rationally Designed Water Enriched Nano Reactor for Stable CO2 Hydrogenation with Near 100% Ethanol Selectivity over Diatomic Palladium Active Sites [J]. ACS Catalysis, 2023, 13(10): 7110-21.
[76] Chen Linxiao, Allec Sarah I., Nguyen Manh-Thuong, et al. Dynamic Evolution of Palladium Single Atoms on Anatase Titania Support Determines the Reverse Water-Gas Shift Activity [J]. Journal of the American Chemical Society, 2023, 145(19): 10847-60.
[77] Zhang Ruiling, Li Yaozhou, Zhou Xuan, et al. Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution [J]. Nature Communications, 2023, 14(1): 2460.
[78] Luo Yi, Li Ke, Chen Yongting, et al. Single-Atom and Hierarchical-Pore Aerogel Confinement Strategy for Low-Platinum Fuel Cells [J]. Advanced Materials, 2023, 35(31): 2300624.
[79] Li Xue, Wen Xue, Lang Junyu, et al. CoN1O2 Single-Atom Catalyst for Efficient Peroxymonosulfate Activation and Selective Cobalt(IV)=O Generation [J]. Angewandte Chemie International Edition, 2023, 62(27): e202303267.
[80] Du Kui, Sun Minghao, Peng Jiehai, et al. Mixed-valence palladium single-atom catalyst induced by hybrid TiO2-graphene through a photochemical strategy [J]. Applied Surface Science, 2023, 625: 157115.
[81] Zhu Yanping, Fan Ke, Hsu Chia-Shuo, et al. Supported Ruthenium Single-Atom and Clustered Catalysts Outperform Benchmark Pt for Alkaline Hydrogen Evolution [J]. Advanced Materials, 2023, 35(35): 2301133.
[82] Xia Jie, Dong Lin, Liu Xiaohui, et al. Identifying the Activity Origin of a Single-Atom Au1/Nb2O5 Catalyst for Hydrodeoxygenation of Methylcatechol: A Stable Substitutional Au+ Site [J]. ACS Catalysis, 2023, 13(9): 6093-103.
[83] Li Jiwei, Xu Junli, Zhao Jia, et al. Modulation of oxygen-etching for generating nickel single atoms for efficient electroreduction of CO2 to syngas (CO/H2) [J]. Journal of Catalysis, 2023, 421: 332-41.
[84] Wang Lingling, Liu Yang, Wang Hongdan, et al. Oxygen-Bridged Vanadium Single-Atom Dimer Catalysts Promoting High Faradaic Efficiency of Ammonia Electrosynthesis [J]. ACS Nano, 2023, 17(8): 7406-16.
[85] Yin Leilei, Zhang Shuai, Sun Mingzi, et al. Heteroatom-Driven Coordination Fields Altering Single Cerium Atom Sites for Efficient Oxygen Reduction Reaction [J]. Advanced Materials, 2023, 35(28): 2302485.
[86] Chen Huai, Xiong Yangyang, Li Jun, et al. Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production [J]. Nature Communications, 2023, 14(1): 1719.
[87] Kumar Pawan, Kannimuthu Karthick, Zeraati Ali Shayesteh, et al. High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution Reaction [J]. Journal of the American Chemical Society, 2023, 145(14): 8052-63.
[88] Deng Yachen, Zhao Jian, Wang Shifu, et al. Operando Spectroscopic Analysis of Axial Oxygen-Coordinated Single-Sn-Atom Sites for Electrochemical CO2Reduction [J]. Journal of the American Chemical Society, 2023, 145(13): 7242-51.
[89] Lv Chunmei, Huang Kai, Fan Yu, et al. Electrocatalytic reduction of carbon dioxide in confined microspace utilizing single nickel atom decorated nitrogen-doped carbon nanospheres [J]. Nano Energy, 2023, 111: 108384.
[90] Li Xinyuan, Zhuang Zechao, Chai Jing, et al. Atomically Strained Metal Sites for Highly Efficient and Selective Photooxidation [J]. Nano Letters, 2023, 23(7): 2905-14.
[91] Zhai Shengliang, Sun Jikai, Sun Lei, et al. Heteronuclear Dual Single-Atom Catalysts for Ambient Conversion of CO2 from Air to Formate [J]. ACS Catalysis, 2023, 13(6): 3915-24.
[92] Wang Qiyou, Dai Minyang, Li Hongmei, et al. Asymmetric Coordination Induces Electron Localization at Ca Sites for Robust CO2 Electroreduction to CO [J]. Advanced Materials, 2023, 35(21): 2300695.
[93] Zhao Zhiyu, Tan Haobin, Zhang Peng, et al. Turning the Inert Element Zinc into an Active Single-Atom Catalyst for Efficient Fenton-Like Chemistry [J]. Angewandte Chemie International Edition, 2023, 62(18): e202219178.
[94] Wang Lei, Ji Bifa, Zheng Yongping, Tang Yongbing. Asymmetric Coordination of Iridium Single-atom IrN3O Boosting Formic Acid Oxidation Catalysis [J]. Angewandte Chemie International Edition, 2023, 62(18): e202301711.
[95] Chen Kai, Wang Jiaxin, Zhang Hu, et al. Self-Tandem Electrocatalytic NO Reduction to NH3 on a W Single-Atom Catalyst [J]. Nano Letters, 2023, 23(5): 1735-42.
[96] Zhang Yu-Xiao, Zhang Shengbo, Huang Helai, et al. General Synthesis of a Diatomic Catalyst Library via a Macrocyclic Precursor-Mediated Approach [J]. Journal of the American Chemical Society, 2023, 145(8): 4819-27.
[97] Wang Yao, Wu Jiao, Tang Shuaihao, et al. Synergistic Fe–Se Atom Pairs as Bifunctional Oxygen Electrocatalysts Boost Low-Temperature Rechargeable Zn-Air Battery [J]. Angewandte Chemie International Edition, 2023, 62(15): e202219191.
[98] Zhang Yu, Zhang Shuting, Ma Junguo, et al. Single-Atom-Mediated Spinel Octahedral Structures for Elevated Performances of Li-Oxygen Batteries [J]. Angewandte Chemie International Edition, 2023, 62(15): e202218926.
[99] Giulimondi Vera, Mitchell Sharon, Pérez-Ramírez Javier. Challenges and Opportunities in Engineering the Electronic Structure of Single-Atom Catalysts [J]. ACS Catalysis, 2023, 13(5): 2981-97.
[100] Wang Gang, Wu Yan, Li Zhujie, et al. Engineering a Copper Single-Atom Electron Bridge to Achieve Efficient Photocatalytic CO2Conversion [J]. Angewandte Chemie International Edition, 2023, 62(13): e202218460.
[101] Xue Wenxuan, Zhu Zhiwei, Chen Sanxia, et al. Atomically Dispersed Co-N/C Catalyst for Divergent Synthesis of Nitrogen-Containing Compounds from Alkenes [J]. Journal of the American Chemical Society, 2023, 145(7): 4142-9.
[102] Dai Yunkun, Liu Bo, Zhang Ziyu, et al. Tailoring the d-Orbital Splitting Manner of Single Atomic Sites for Enhanced Oxygen Reduction [J]. Advanced Materials, 2023, 35(14): 2210757.
[103] Yu Fengshou, Zhan Jiayu, Chen Datong, et al. Electronic States Regulation Induced by the Synergistic Effect of Cu Clusters and Cu-S1N3Sites Boosting Electrocatalytic Performance [J]. Advanced Functional Materials, 2023, 33(13): 2214425.
[104] Wang Sicong, Ding Tao, Liu Tong, et al. Ligand Assisted Thermal Atomization of Palladium Clusters: An Inspiring Approach for the Rational Design of Atomically Dispersed Metal Catalysts [J]. Angewandte Chemie International Edition, 2023, 62(16): e202218630.
[105] Li Zhe, Liu Fangning, Chen Chuanxia, et al. Regulating the N Coordination Environment of Co Single-Atom Nanozymes for Highly Efficient Oxidase Mimics [J]. Nano Letters, 2023, 23(4): 1505-13.
[106] Ding Shichao, Barr Jordan Alysia, Lyu Zhaoyuan, et al. Effect of Phosphorus Modulation in Iron Single-Atom Catalysts for Peroxidase Mimicking [J]. Advanced Materials, 2024, 36(10): 2209633.
[107] Jun Sang Eon, Kim Youn-Hye, Kim Jaehyun, et al. Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting [J]. Nature Communications, 2023, 14(1): 609.
[108] Yang Shengshu, Zhang Fang, Qiu Haifa, et al. Highly efficient hydrogen production from methanol by single nickel atoms anchored on defective boron nitride nanosheet [J]. Nano Research, 2023, 16(7): 8800-8.
[109] Zhang Lilong, Meng Ge, Zhang Wei, et al. Oriented Conversion of a LA/HMF Mixture to GVL and FDCA in a Biphasic Solvent over a Ru Single-Atom/Nanoparticle Dual-Site Catalyst [J]. ACS Catalysis, 2023, 13(4): 2268-76.
[110] Sun Zhiguo, Zhang Huijuan, Cao Linlin, et al. Understanding Synergistic Catalysis on Cu-Se Dual Atom Sites via Operando X-ray Absorption Spectroscopy in Oxygen Reduction Reaction [J]. Angewandte Chemie International Edition, 2023, 62(13): e202217719.
[111] Chang Jinquan, Hülsey Max J., Wang Sikai, et al. Electrothermal Water-Gas Shift Reaction at Room Temperature with a Silicomolybdate-Based Palladium Single-Atom Catalyst [J]. Angewandte Chemie International Edition, 2023, 62(12): e202218265.
[112] Wang Huilin, Bootharaju Megalamane S., Kim Jeong Hyun, et al. Synergistic Interactions of Neighboring Platinum and Iron Atoms Enhance Reverse Water–Gas Shift Reaction Performance [J]. Journal of the American Chemical Society, 2023, 145(4): 2264-70.
[113] Li Jiawei, Zeng Hongliang, Dong Xue, et al. Selective CO2 electrolysis to CO using isolated antimony alloyed copper [J]. Nature Communications, 2023, 14(1): 340.
[114] Li Qiqi, Zhang Qin, Xu Wenli, et al. Sowing Single Atom Seeds: A Versatile Strategy for Hyper-Low Noble Metal Loading to Boost Hydrogen Evolution Reaction [J]. Advanced Energy Materials, 2023, 13(10): 2203955.
[115] Liu Jianbin, Liao Jiangwen, Huang Kang, et al. A General Strategy to Remove Metal Aggregates toward Metal-Nitrogen-Carbon Catalysts with Exclusive Atomic Dispersion [J]. Advanced Materials, 2023, 35(15): 2211398.
[116] Wu Fan, Ma Jinghang, Wang Yang, et al. Single Copper Atom Photocatalyst Powers an Integrated Catalytic Cascade for Drug-Resistant Bacteria Elimination [J]. ACS Nano, 2023, 17(3): 2980-91.
[117] Yan Minmin, Wei Zengxi, Gong Zhichao, et al. Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis [J]. Nature Communications, 2023, 14(1): 368.
[118] Liu Hong, Zou Haiyuan, Wang Dan, et al. Second Sphere Effects Promote Formic Acid Dehydrogenation by a Single-Atom Gold Catalyst Supported on Amino-Substituted Graphdiyne [J]. Angewandte Chemie International Edition, 2023, 62(11): e202216739.
[119] Sun Xun, Qiu Yue, Jiang Bo, et al. Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries [J]. Nature Communications, 2023, 14(1): 291.
[120] Chen Zehong, Peng Xinwen, Chen Zhongxin, et al. Mass Production of Sulfur-Tuned Single-Atom Catalysts for Zn-Air Batteries [J]. Advanced Materials, 2023, 35(15): 2209948.
[121] Li Jingjing, Xia Wei, Tang Jing, et al. Metal-Organic Framework-Derived Graphene Mesh: a Robust Scaffold for Highly Exposed Fe-N4 Active Sites toward an Excellent Oxygen Reduction Catalyst in Acid Media [J]. Journal of the American Chemical Society, 2022, 144(21): 9280-91.
[122] Miao Xiang, Chen Wenxing, Lv Shuning, et al. Stabilizing Single-Atomic Pt by Forming Pt-Fe Bonds for Efficient Diboration of Alkynes [J]. Advanced Materials, 2023, 35(14): 2211790.
[123] Ren Longtao, Liu Jun, Zhao Yajun, et al. Regulating Electronic Structure of Fe-N4Single Atomic Catalyst via Neighboring Sulfur Doping for High Performance Lithium–Sulfur Batteries [J]. Advanced Functional Materials, 2023, 33(12): 2210509.
[124] Cao Peike, Quan Xie, Nie Xiaowa, et al. Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents [J]. Nature Communications, 2023, 14(1): 172.
[125] Tian Hao, Song Ailing, Zhang Peng, et al. High Durability of Fe-N-C Single-Atom Catalysts with Carbon Vacancies toward the Oxygen Reduction Reaction in Alkaline Media [J]. Advanced Materials, 2023, 35(14): 2210714.
[126] Tian Zhangliu, Da Yumin, Wang Meng, et al. Selective photoelectrochemical oxidation of glucose to glucaric acid by single atom Pt decorated defective TiO2[J]. Nature Communications, 2023, 14(1): 142.
[127] Jia Tongtong, Meng Di, Duan Ran, et al. Single-Atom Nickel on Carbon Nitride Photocatalyst Achieves Semihydrogenation of Alkynes with Water Protons via Monovalent Nickel [J]. Angewandte Chemie International Edition, 2023, 62(9): e202216511.
[128] Cheng Cheng, Ren Wei, Miao Fei, et al. Generation of FeIV=O and its Contribution to Fenton-Like Reactions on a Single-Atom Iron–N–C Catalyst [J]. Angewandte Chemie International Edition, 2023, 62(10): e202218510.
[129] Luo Tianmi, Huang Jianfeng, Hu Yuzhu, et al. Fullerene Lattice-Confined Ru Nanoparticles and Single Atoms Synergistically Boost Electrocatalytic Hydrogen Evolution Reaction [J]. Advanced Functional Materials, 2023, 33(12): 2213058.
[130] Ji Yongjun, Chen Xiaoli, Liu Shaomian, et al. Tailoring the Electronic Structure of Single Ag Atoms in Ag/WO3 for Efficient NO Reduction by CO in the Presence of O2 [J]. ACS Catalysis, 2023, 13(2): 1230-9.
[131] Yang Niuwa, Tian Shaonan, Feng Yongjun, et al. Introducing High-Valence Iridium Single Atoms into Bimetal Phosphides toward High-Efficiency Oxygen Evolution and Overall Water Splitting [J]. Small, 2023, 19(15): 2207253.
[132] Qian Mengying, Wu Xi-Lin, Lu Meichi, et al. Modulation of Charge Trapping by Island-like Single-Atom Cobalt Catalyst for Enhanced Photo-Fenton-Like reaction [J]. Advanced Functional Materials, 2023, 33(12): 2208688.
[133] Jin Hongqiang, Cui Peixin, Cao Changyan, et al. Understanding the Density-Dependent Activity of Cu Single-Atom Catalyst in the Benzene Hydroxylation Reaction [J]. ACS Catalysis, 2023, 13(2): 1316-25.
[134] Zhao Xin, Fang Ruiqi, Wang Fengliang, et al. Dual-Metal Single Atoms with Dual Coordination for the Domino Synthesis of Natural Flavones [J]. JACS Au, 2023, 3(1): 185-94.
[135] Wu Zhiyi, Shen Jiahui, Li Chaoran, et al. Mo2TiC2MXene-Supported Ru Clusters for Efficient Photothermal Reverse Water–Gas Shift [J]. ACS Nano, 2023, 17(2): 1550-9.
