S. M. Bhaway等人[7]通过使用operando掠入射小角X射线散射/X射线衍射(GISAXS/GIXD)技术,研究了模型有序介孔镍钴氧化物(NiCo2O4)薄膜负极在电池运行过程中的结构变化。研究发现,介孔尺寸对有序纳米结构在循环过程中的稳定性有显著影响。小介孔(约9 nm)的负极在前两个充放电循环中就会发生结构崩溃,而大介孔(17-28 nm)的负极则在前两个循环中基本保持了其纳米结构,从而显著提高了容量保持率。然而,随着更多充放电循环的继续,有序纳米结构会逐渐失去,导致电池性能下降。这些多尺度的operando测量提供了原子尺度变化如何在电池运行过程中转化为纳米结构变化的见解。图14 GISAXS/GIXD技术用于研究薄膜负极在电池运行过程中的结构变化
Jan Ilavsky[9]介绍了美国阿贡国家实验室高级光子源(APS)的USAXS设施的一系列新发展。这些发展包括采用更高阶的晶体光学和更高的X射线能量作为标准操作模式,快速扫描测量作为标准操作模式,自动化的连续孔径SAXS测量,以及相关的快速WAXS测量,用于在不干扰样品几何形状的情况下进行X射线衍射。这些改进使得USAXS/SAXS/WAXS测量能够在5分钟内完成,允许在广泛的样品条件下进行原位和操作条件下的测量。图16 USAXS/SAXS/WAXS实时采集众所周知,在SAXS、WAXS和XRD等散射技术中,入射X射线能量是恒定的,而在XAFS技术中,入射X射线能量与能量有关。当XAFS与SAXS/WAXS或XRD技术结合在一起时,由于入射X射线能量的差异,同时获取散射和光谱数据是一项挑战。克服这个困难的解决办法是交替收集散射和光谱数据,比如上述SAXS/XAFS联用技术。SAXS/XRD/XAFS技术实际上,由于交替收集散射和光谱数据,这些联用技术只是准同时的。最近,Wu等人[10]开发了一种新颖的SAXS/XRD/XAFS联用技术。该技术能够在北京同步辐射装置(BSRF)的1W2B光束线上,同步测量电池样品在反应过程中的局部原子结构、纳米结构和微米结构的变化。通过双向能量扫描策略,该技术成功地对Cu粉进行了测试,并能通过SAXS、XRD和XAFS数据的统一处理,实现对(BiO)2CO3颗粒在水热反应中形成和生长的动态观察。这一联用技术特别适用于研究动态化学反应和粒子生长过程,尽管受到机械运动速度的限制,它已能实现秒级时间分辨率。随着技术的不断进步,预计该技术的时间分辨率将进一步提高,从而能够监测电池材料反应的超快动态过程,揭示电池内部机制。此外,通过配备合适的原位样品环境,这种新型联用技术能够全面揭示从原子/分子到纳米再到微米尺度的结构演变。图17新型原位联用SAXS/XRD/XAFS技术参考文献[1] Liu Xiaoxu, Wang Tian, Zhang Tengsheng, et al. Solvated Sodium Storage via a Coadsorptive Mechanism in Microcrystalline Graphite Fiber [J]. Advanced Energy Materials, 2022, 12(45): 2202388.[2] Qian Kun, Yu Zhou, Liu Yuzi, et al. Understanding fluorine-free electrolytes via small-angle X-ray scattering [J]. Journal of Energy Chemistry, 2022, 70: 340-346.[3] Fang Lingzhe, Xu Wei, Lyu Xingyi, et al. Suppressing the Shuttle Effects with FeCo/SPAN Cathodes and High-Concentration Electrolytes for High-Performance Lithium–Sulfur Batteries [J]. ACS Applied Energy Materials, 2023, 6(2): 795-801.[4] Wu Fan, Luo Longfei, Tang Zhehao, et al. Block Copolymer Electrolytes with Excellent Properties in a Wide Temperature Range [J]. ACS Applied Energy Materials, 2020, 3(7): 6536-6543.[5] Hatakeyama Yoshikiyo, Sugimoto Mana, Suga Akifumi, et al. Tracking Structural Changes of Carbon Nanotube Electrodes for Lithium–Air Batteries by Time-Resolved Operando Wide- and Small-Angle X-ray Scattering [J]. The Journal of Physical Chemistry C, 2022, 126(36): 15094-15103.[6] Prehal Christian, Von Mentlen Jean-Marc, DrvaričTalian Sara, et al. On the nanoscale structural evolution of solid discharge products in lithium-sulfur batteries using operando scattering [J]. Nature Communications, 2022, 13(1): 6326.[7] Bhaway Sarang M., Qiang Zhe, Xia Yanfeng, et al. Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes [J]. ACS Nano, 2017, 11(2): 1443-1454.[8] Povia Mauro, Herranz Juan, Binninger Tobias, et al. Combining SAXS and XAS To Study the Operando Degradation of Carbon-Supported Pt-Nanoparticle Fuel Cell Catalysts [J]. ACS Catalysis, 2018, 8(8): 7000-7015.[9] Ilavsky Jan, Zhang Fan, Andrews Ross N., et al. Development of combined microstructure and structure characterization facility for in situ and operando studies at the Advanced Photon Source [J]. Journal of Applied Crystallography, 2018.[10] Wu Zhonghua, Liu Yunpeng, Xing Xueqing, et al. A novel SAXS/XRD/XAFS combined technique for in-situ time-resolved simultaneous measurements [J]. Nano Research, 2023, 16(1): 1123-1131.