目前,氢气主要是从煤、石油和电解水中化学产生的,这不仅效率低下,而且还会导致全球变暖。由于其高效、低成本和绿色的特点,太阳能转化为氢气正受到越来越多的关注。通常,太阳能有三种不同的利用方式:自然通过生物光合作用、人工通过人工光合作用和半人工通过半人工光合作用。生物光合作用有许多缺点,其中之一是它不能最大限度地转化太阳能,并可能导致光损伤,这也需要能量来修复,从而降低转化过程的效率。在人工光合作用系统中,高转换效率伴随着昂贵的高纯度半导体,这些半导体在浸泡在电解液中时会降解。半人工光合作用系统可以克服自然光合作用和人工光合作用的局限性,一方面,生物系统的自我修复和繁殖速度,可以为更有效地利用太阳能提供一个相对完整的环境。另一方面,半导体材料的光吸收效率可以通过能带结构调整和缺陷结构构造等各种方法改善材料。
本研究将氧缺陷二氧化钛通过静电作用与大肠杆菌结合,设计开发了一种在太阳光下高效产氢的无机生物杂化系统。在二氧化钛的导带中引入缺陷带,增强了对可见光的吸收和电荷分离。在E. coli-TiO2-x生物杂化系统中,TiO2-x纳米颗粒在光照下产生的光生电子被传递到大肠杆菌细胞,与生物活性成分相互作用,并参与产氢途径(如图1所示)。时间分辨荧光光谱、密度泛函理论计算和Bader电荷分析表明,E. coli-TiO2-x生物杂化体系缩短了电子转移路径,促进了光电子转移。这种生物杂化系统既利用了材料的光吸收特性,又以清洁和选择性的方式结合了微生物的高效催化能力,为太阳能到化学能转换提供了一条新的可行途径。
图1.用于太阳能制氢的E. coli-TiO2-x生物杂化系统示意图
图6.密度泛函理论计算了(a)TiO2-x-Heme 10和(b)TiO2-x-Heme 10的电子密度差.表面电子密度为0.001 e/Bohr3
刘丹青教授:哈尔滨理工大学教授,博士生导师。2015年博士毕业于哈尔滨工业大学化工学院。主要研究方向为功能纳米材料的制备及其在能源领域的应用,包括微生物燃料电池,光催化降解有机污染物,无机-微生物杂化体系在能源转化方面的应用等。主持国家自然科学基金面上项目、黑龙江省自然科学基金面上项目等,发表SCI论文30余篇,授权发明专利8项,专利转化1项。
翁凌教授:哈尔滨理工大学教授/博导。中国电工技术学会绝缘材料于绝缘技术专委会委员,国家自然科学基金委项目评审专家,教育部学位中心评审专家。主要从事聚合物基介电功能复合材料及工程电介质材料的理论及实际应用等方面的研究。主持国家自然科学基金面上项目、黑龙江省自然科学基金面上项目、广东省产学研合作研究项目等10余项,发表SCI论文60余篇,获省级科技/教学奖励4次,出版专著1部,授权专利9项。
贺良灿教授:哈尔滨工业大学医学与健康学院教授/博导,纳米医学与药物研究中心主任。国家级青年人才项目获得者,主持国家自然科学基金、黑龙江省优秀青年基金、头雁子课题等项目多项。主要研究方向为有机-无机生物材料、材料-生物界面调控、纳米医学与药物,在JAm Chem Soc、Angew Chem、Adv Sci、Nat. Commu等国际重要期刊上发表SCI论文50余篇,单篇最高引用650余次,研究工作总引用5000余次,9篇论文入选1%高引论文。担任Frontier in Chemistry副主编,Nano Research、Aging and Disease、iMeta青年编委,入选2022年Journal of Materials Chemistry B Emerging Investigators。
第一作者简介:吕星星:哈尔滨理工大学和哈尔滨工业大学联合培养博士生。
Lv X, Huang W, Gao Y, et al. Boosting solar hydrogen production via electrostatic interaction mediated E. coli-TiO2-x biohybrid system. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6432-9.