本文利用不同极性的溶剂(四甲基砜[TMS]和二丁基醚[DBE])之间的相分离现象来实现双相电解质的设计。
多硫化锂(LiPSs)的溶解对快速的正极动力学至关重要,但对负极的稳定性却不利,尤其是在贫电解液条件下。
其中,高极性、高密度的TMS-双(三氟甲磺酰)亚胺锂-三氟乙酸铵作为正极电解液强烈地溶解了LiPSs,推动了硫的氧化还原反应。此外,DBE和聚合物离子导体的复合材料作为负极电解质。在负极侧加入DBE,有效地防止了腐蚀性物质(LiPSs和三氟乙酸氨)的交叉,使锂金属负极的稳定性得到了明显改善。
因此,采用双相电解质的软包锂硫电池表现出了更持久的循环性能。在没有任何电极改性的情况下,这些电池在贫电解液(E/S = 4 µL mg-1)、低锂过量(N/P = 3)条件下经过120次循环后可以保持其初始容量的72%以上。总体而言,基于液态的双相电解质的概念可以刺激新的努力,以满足各种类型的锂金属电池的电解质要求。
A Dual-Phase Electrolyte for High-Energy Lithium–Sulfur Batteries. Advanced Energy Materials 2022. DOI: 10.1002/aenm.202202566
声明:如需转载请注明出处(华算科技旗下资讯学习网站-学术资讯),并附有原文链接,谢谢!