电池顶刊
-
山大ACS Energy Letters:分子/离子锚定界面实现4.8 V锂金属电池
由于电动汽车的普及,对更高能量密度的储能技术的需求不断增长。锂(Li)金属电池(LMBs)因其超高的理论比容量(3860 mA h g−1),是下一代高能量密度电池最有希望的候选者…
-
4.95 V,1600次循环!东北师范大学,发表Angew!
超高压钾离子电池(PIBs)凭借成本竞争力,成为高能电池系统的一个可行选择。然而,由于高活性钾金属负极和正极的界面不稳定性导致的快速容量衰减和较差的库仑效率问题依然难以解决,此外钾…
-
北理陈人杰PNAS:可充电Li-LiNO3电池
锂离子电池作为一种高效,环保,高能量密度的储能技术,在电动汽车,可再生能源储能系统和移动设备等领域得到广泛应用。然而,比容量仍然受到正极中活性材料的限制。 在此,北京理工大学陈人杰…
-
突破传统局限!电池大佬王春生,最新Nature Nanotechnology!
2025年1月23日,电池大佬王春生教授在Nature Nanotechnology上发表了关于全固态锂金属电池的突破性研究,通过在固态电解质表面设计致密的LiF–LixPyOzF…
-
1000次循环,超80%!孟颖,发表ACS Energy Letters!
LMBs 因采用锂金属作为负极材料,凭借锂的低电化学势和高比容量,展现出显著提升电池比能量的潜力。但在实际应用中,LMBs 面临着严峻挑战,其中锂金属负极的固体电解质中间相(SEI…
-
低成本、无溶剂、“零浪费”!安徽大学/温州大学/上海大学,联手发表AM!
电池作为电力存储系统广泛应用于电子设备和电动汽车中。从回收有价金属和减轻环境污染等角度考虑,废电极的回收至关重要。其中,将原材料闭环转化为高附加值产品是可持续发展的关键一环。 在此…
-
从40%提升至70%!他,致力于电池材料研究,手握Science,发表Nature Nanotechnology!
成果简介 聚合物电解质对于由固体或半固体电解质组成的安全和高能电池具有很大的前景。多相聚合物电解质由流动相和刚性相组成,具有快速离子传导和理想的机械性能。然而,在理解和调节电极|电…
-
5C,25000次!北京大学庞全全,发表Nature!
全固态锂硫电池具有高的比能量,因其适中的电位不会导致固态电解质的进一步副反应,充电时不会释氧,因此具有更高的本征安全性。此外,使用固态电解质能有效解决液态锂硫电池中的多硫化物穿梭效…
-
谢和平院士领衔!深圳大学&科廷大学邵宗平,联手发表Nature子刊!
成果简介 正极的热力学性能与高温固体氧化物燃料电池(SOFCs)的耐久性密切相关,热循环过程中主要存在两种机械故障:界面分层和正极本体开裂。断裂强度/刚度不足引起的本体裂开是一个大…
-
高效回收!同济大学&麻省理工&华科大黄云辉,发表Nature Sustainability!
研究背景 锂离子电池(LIBs)因其在电动汽车(EVs)和固定式电池储能系统(BESS)等领域的广泛应用,成为了现代能源存储的核心材料。与传统的铅酸电池相比,LIBs具有更高的能量…